Contribution à l'Étude des Borures à Teneur Élevée en Bore

PAR PIERRE BLUM*

Laboratoire d'Électrochimie et d'Électrométallurgie, rue Hoche, Grenoble, France

ET FÉLIX BERTAUT

Laboratoire d'Électrostatique et de la Physique du Métal, Institut Fourier, Grenoble, France

(Reçu le 21 janvier 1953)

The structures of borides of the type XB_4 , XB_6 , $(XNa)B_6$ and XB_{12} are described, X being an element in which the *d* shell immediately below the valency electrons is empty. The coordination of boron atoms by boron is 3 or 5. The boron radii are of two kinds: in the rigid covalent B-B bonds the radius varies little from 0.86 Å; in the boron-metal bonds, however, it varies between 0.86 and 1.10 Å. Pauling's theory does not give a satisfactory quantitative evaluation of the valencies in these borides; Kiessling reached a similar conclusion in his study of borides of lower boron content.

Après le beau travail de Kiessling (1950, 1951*a*, *b*) sur les borures métalliques du type X_2B , XB, X_3B_4 , X_2B_5 , à teneur en bore faible et moyenne, nous traitons ici des borures à forte teneur en bore des types $XB_4(A)$, $XB_6(B)$ et $UB_{12}(C)$ dont les structures et propriétés sont intéressantes.

Historique

La synthèse de UB₄ a été réalisée pour la première fois par Andrieux (1929*a*, *b*) au moyen des procédés de l'électrolyse ignée. Brewer & Sawyer (1950 cités chez Zalkin & Templeton, 1950) ont préparé CeB₄, ThB₄ et UB₄ par synthèse directe.

A. Étude de XB_4

Structure et paramètres

Un diagramme de cristal tournant autour de a nous a permis de fixer les paramètres de UB₄:

$$a = 7,080, c = 3,978 Å$$

Z = 4, et le groupe d'espace probable $D_{4h}^5 - P4/mbm$, la règle d'extinction observée étant — h0l n'existe que pour h pair (Bertaut & Blum, 1949). Nous donnons ici uniquement le tableau des taches équatoriales et de leurs intensités (Tableau 1). L'absence des réflexions (40l), l = 0, 1, 2 et 3, fixe déjà avec une bonne précision la position de l'uranium en $4(g), \pm[(x, \frac{1}{2} + x, 0);$ $(\frac{1}{2} + x, \overline{x}, 0)]$ avec x = 0,31. On note cependant que parmi les intensités observées (h0l) et non corrigées, certaines diffèrent fortement des valeurs calculées (cf. (002) et (202)). Pour éliminer des effets d'extinction et

Tableau	1.	$UB_4;$	rotation	autour	de	a;
	ta	ches e	éguatoria	les		

Indice	$\sin^2 heta$	Io	$p F ^2$
001	0,0511	m^+	2,690
200	0,0650	m	1,404
201	0,1159	f	2,958
002	0,2037	m^+	2.310
400	0,2560	_	0,008
202	0,2678	f	2,285
401	0,3065		0,016
003	0,4559	m^+	1,968
402	0,4580	—	0,015
203	0,5204	m	1,981
600	0,5760	m^{-}	0,751
601	0,6274	m^+	1,464
403	0,7105		0,011
602	0,7778	$oldsymbol{F}$	1,360
004	0,8081	m^+	1,664
204	0,8724	$oldsymbol{F}$	1.740

Notations: F = fort, m = moyen, f = faible. Dans les intensités calculées $p|F|^2$ la contribution de B est négligée.

de forme du cristal, nous avons pris aussi des diagrammes de poudres avec Co $K\alpha$.* Ici l'accord est satisfaisant.

Les atomes d'uranium forment deux sortes de prismes, carrés et triangulaires (Fig. 1). Zalkin & Templeton (1950) ont établi l'isomorphisme des borures CeB_4 et ThB_4 , et, considérant la structure comme la combinaison de deux structures existantes, type XB_6 à octaèdres de B et type XB_2 à coordination prismatique des atomes de B par six atomes métalliques, ces auteurs ont indiqué des paramètres possibles des atomes de B. Nous préférons donner ici les paramètres de B auxquelles nous avons abouti en 1949 et qui sont en meilleur accord avec les distances B-B admises (Tableau 2). Nous ne les avons pas publiés plus tôt à

6

^{*} La détermination des paramètres de bore dans UB_{12} , Th B_6 et (ThNa) B_6 a fait partie de la deuxième thèse (non publiée) de doctorat de P. Blum, soutenue à la Faculté des Sciences de Grenoble en mai 1952.

[†] Adresse actuelle: X-ray Analysis Laboratory, The Pennsylvania State College, State College, Pa., U.S.A.

^{*} Les intensités sont en général en bon accord avec les données obtenues par Zalkin & Templeton (1950) avec Cu $K\alpha$.

cause d'une difficulté dans l'interprétation des relations stériques que nous discuterons maintenant.

Tableau 2. UB₄; paramètres et distances interatomiques

$(D_{4h}^5 - P4/mbm)$

4 U en 4(g) $\pm [(x, \frac{1}{2}+x, 0); (\frac{1}{2}-x, x, 0)]; x = 0,310.$ 4 B en 4(e) $\pm [(0, 0, z); (\frac{1}{2}, \frac{1}{2}, z)]; z = 0,214.$ 4 B en 4(h) $\pm [(x, \frac{1}{2}+x, \frac{1}{2}); (\frac{1}{2}-x, x, \frac{1}{2})]; x = -0,086.$ 8 B en 8(j) $\pm [(x, y, \frac{1}{2}); (\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2});$ $(\overline{y}, x, \frac{1}{2}); (\frac{1}{2}+y, \frac{1}{2}+x, \frac{1}{2})]; x=0,174, y=0,042.$

Dista	ances U–B	Nombre de voisins B	•
$egin{array}{c} \overline{\mathrm{U-B}}_e & \ \mathrm{U-B}_{h1} & \ \mathrm{U-B}_{h2} & \ \mathrm{U-B}_j & \ \end{array}$	2,711 Å 2,998 2,884 2,772	4 2 4 8	
Distances U–U	Nombre de voisins U	Distan	ces B-B
U-U (carré) 3,64 U-U (triangle) 3,805	Å 4 1	$egin{array}{c} \mathbf{B}_e-\mathbf{B}_e \ \mathbf{B}_e-\mathbf{B}_j \ \mathbf{B}_j-\mathbf{B}_j \ \mathbf{B}_j-\mathbf{B}_h \ \mathbf{B}_h-\mathbf{B}_h \end{array}$	1,702 Å 1,702 1,795 1,726 1,722

Alors que les distances UB_e et UB_i sont comprises dans l'intervalle des distances U-B observées jusqu'ici (2,693 Å dans UB₂; 2,796 Å dans UB₁₂), les distances UB_{h} entre les atomes U d'un prisme triangulaire et l'atome B_h au centre du prisme sont exagérément grandes (2,998 Å et 2,88 Å) et la valence de Pauling (1947), associée à l'atome de bore central est très faible (1,85 au lieu de 3). En d'autres termes, la structure proposée est conforme aux coordinations habituelles du bore dans ses liaisons B-B (3 ou 5), mais ne serait pas conforme à la théorie de Pauling. Un essai de préciser la position de B_h par analyse de Fourier a été infructueux.*

Depuis, nous avons rencontré de nombreuses exceptions à la théorie de Pauling qui, dans le cas des borures (voir aussi Kiessling, 1951a, b) ne semble pas donner plus que des indications qualitatives. Comme argument en faveur de la structure de la Fig. 1 nous citons le résultat que nous utiliserons dans notre étude à plusieurs reprises, à savoir que si le rayon de B est habituellement de 0,86 Å dans les liaisons B-B, il peut varier considérablement dans les liaisons B-métal (Bertaut & Blum, 1951, 1952). Dans les composés X_2 B par exemple (X = Fe, Co, Ni, Mn, Mo, W, Ta) où le atomes de B se trouvent isolés dans les lacunes formées par huit atomes métalliques, le rayon de la lacune, donc de B varie de 0,96 à 1,11 Å (Kiessling, 1950). De la distance maxima entre deux atomes U de la base du prisme triangulaire (3,805 Å) on déduit un rayon maximum r(U) = 1,903 Å. Le rayon du bore B_b dans la direction U-B est alors r(B) = 2,998-1,903= 1,095 Å, soit à l'intérieur de l'intervalle précité de variation possible.

Le même argument vaut pour ThB₄ et CeB₄ où de plus nous retrouverons des distances B-métal aussi considérables dans leurs hexaborures. Les paramètres de CeB₄ et de ThB₄ (Zalkin & Templeton, 1950) et de UB₄ sont résumés dans le Tableau 3.

Tableau	3. Pa	ramètres	de	réseaux	XB_4
	CeB	, Th	ıB,	UF	3,

	00004	111124	0174
a (Å)	7,205	7,256	7,080
c (Å)	4,090	4,113	3,978

Dans la théorie de Pauling (1947) U a la valence 5,78. Un état de valence plus faible, v = 2,3, a été signalé par Pauling & Ewing (1948) et par Zachariasen (1949a). Il en est encore de même dans UB_4 où le calcul fournit v = 2, 2.

B. Les hexaborures, XB_6

Historique

Moissan & Williams (1897) ont préparé les hexaborures de métaux alcalino-terreux par réduction au four électrique de leurs borates. ThB₆ a été obtenu par Binet du Jassoneix (1909). Andrieux (1929a, b) par l'électrolyse ignée a fait la synthèse de ces borures et des hexaborures isomorphes des terres rares. Il a également montré en collaboration avec Barbetti (Andrieux & Barbetti, 1932) que le sodium peut entrer dans la formule de XB_6 . Enfin Lafferty (1951) a donné un regain d'actualité aux hexaborures en découvrant leur considérable pouvoir émissif thermo-ionique.

Structure et paramètres

La structure (groupe $O_h^1 - Pm3m$; X en $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ B en $\pm(x, 0, 0)$, Stackelberg & Neumann, 1932), représentée dans la Fig. 2, peut être considérée, soit comme un empilement tridimensionnel de files d'octaèdres B₆, les grandes lacunes entre octaèdres étant comblées par les atomes métalliques, soit comme un

^{*} Les mesures d'intensités sur des monocristaux sont entachées d'erreurs supérieures à la contribution des atomes de B. Sur les diagrammes de poudres les très nombreuses raies empiètent trop pour être séparées par photométrie.

réseau métallique simplement cubique dilaté par les groupements octaédriques B_6 . Chaque atome X a 24 voisins B et 6 voisins X. Chaque atome B a 4 voisins X et 5 voisins B. Laves (1933) a le premier attiré l'attention sur la coordination quintuple du bore qui

Fig. 2. XB₆.

semble être fréquente $(XB_6, UB_{12}, décaborane)$, d'ailleurs conforme à la règle des (8-N) de Hume-Rothery. Pauling & Weinbaum (1934), dans l'étude de CaB₆, ont admis que les cinq voisins de chaque atome B sont équidistants ce qui confère au paramètre x la valeur x = 0,293.

Nous avons remesuré les paramètres a des hexaborures des alcalino-terreux et de quelques terres rares sur des échantillons que Monsieur le Professeur Andrieux a bien voulu nous confier.

Les valeurs de a, résumées dans la première colonne du Tableau 4 sont plus précises que celles des mesures déjà anciennes de Stackelberg & Neumann (1932) et Allard (1932). La deuxième colonne fournit les valeurs de $\frac{1}{2}a$ qu'il faut considérer comme rayons limites

Tableau 4. Paramètres et rayons atomiques dans XB₆

Sub- stance	a (Å)	r _X (24) (Å)	$r_X(12) \ ({ m \AA})$	r _B dans B–B (Å)	$r_{ m B}~{ m dans} X$ –B (Å)
Ca	4,145 ₀	2,073	1,970	0,858	0,882
\mathbf{Sr}	4,198₄	2,092	2,148	0,869	0,994
Ba	4,268	2,134	2,215	0,884	1,011
La	$4,156_{e}$	2,078	1,871	0,861	0,985
Ce	$4,141_{0}$	2,071	1,818	0,857	0,981
Nd	4,1284	2,064	1,818	0,855	0,977
Gd	4,112,	2,056	1,795	0,852	0,974
Yb	4,144,	2,072	1,933	0,858	0,981
Y	4,113	2,057	1,797	0,852	0,974
Th	$4,113_{2}^{2}$	2,057	1,797	0,852	0,974

 $r_{\chi}(24)$ de l'élément X pour la coordination 24. À titre de comparaison nous avons consigné les valeurs de $r_{\chi}(12)$, basées sur les structures des métaux et compilées chez Pauling (1947). On voit que la variation de $r_X(24)$ est dans le même sens que celle de $r_X(12)$, mais qu'elle est plus faible — ce qui est dû à la grande rigidité de l'édifice des B. La quatrième colonne résume les rayons de B dans les liaisons B-B et calculés dans l'hypothèse de Pauling & Weinbaum. Ils varient peu autour d'une moyenne de 0,86 Å, conformément aux conclusions de Kiessling dans l'étude d'autres borures.

Les hexaborures substitués par Na de Ba et Th ont été préparés par le premier des auteurs. Leur paramètre a suit une loi de Végard dans le cas de Th, mais non pas dans celui de Ba (voir Tableau 5). Des essais de

Tab	oleau	5.	Paramètres	de	$X_m N \epsilon$	$a_{1-m}B$	6
-----	-------	----	------------	----	------------------	------------	---

Composition	a (Å)
$\mathrm{Th}_{0,56}\mathrm{Na}_{0,44}$	4,127
Th _{0,37} Na _{0,63}	4,142
${\rm Th}_{0,23}{ m Na}_{0,73}$	4,151
Ba _{0,74} Na _{0,26}	4,256
Ba _{0,57} Na _{0,43}	4,232

substitution par d'autres alcalins tels que Li et K sont restés infructueux, Na étant le seul métal alcalin ayant un rayon atomique comparable à celui des métaux X dans XB_6 .

Liaisons B-B

L'hypothèse de Pauling & Weinbaum mérite une vérification expérimentale, car on voit aisément (Fig. 2) que si chaque atome B a quatre voisins équivalents de par la symétrie du réseau, il n'en est pas de même du cinquième. Nous avons analysé la densité électronique suivant la direction [100] par une série linéaire de Fourier dans le cas difficile de ThB₆ et dans celui de Th_{0,23}Na_{0,77}B₆, particulièrement intéressant à cause de l'influence possible sur les liaisons B-B de l'élément Na dont aucun borure n'est actuellement connu.

Les courbes de la Fig. 3 représentent le résultat de l'analyse de Fourier (technique expérimentale: clichés de poudres, Cu $K\alpha$, monochromateur, photomètre Zeiss,* correction des intensités du facteur de Lorentz-Thompson et d'absorption (Claassen), normalisation des facteurs de structure d'après Wilson). Le maximum, en admettant une variation parabolique est trouvé en

$$x = 0,293$$
 dans ThB₆ et
 $x = 0,294$ dans Th_{0.23}Na_{0.77}B₆

ce qui prouve que les cinq liaisons B-B sont équivalentes et que l'introduction du corps monovalent Na ne les perturbe pas. L'effet de sommation finie, fort dans ThB₆ et plus faible dans Th_{0,23}Na_{0,77}B₆, s'exprime par des maxima parasites qui forment 'pont' entre

^{*} Certaines raies d'indices différents du système cubique se superposent. Dans ce cas nous avons partagé l'intensité totale photométrée de la raie globale dans le rapport des intensités individuelles calculées pour la valeur x = 0,293.

les atomes métalliques, en $(\frac{1}{2}, 0, 0)$, et entre les atomes de bore, en (0, 0, 0). La sommation finie aurait pu déplacer le maximum. Cet effet peut être contrôlé d'une manière très simple. Nous avons calculé les facteurs de structure dans l'hypothèse x = 0,293 avec

Fig. 3. Analyse de Fourier (a) de ThB₆ et (b) de Th_{0,23}Na_{0,77}B₆ suivant la droite [100].

les valeurs de Thomas-Fermi pour Th et de Hartree pour Na et B et nous avons encore évalué la densité suivant [100] avec une série de Fourier, arrêtée au même nombre de termes que la série expérimentale. On retrouve alors les résultats précédents à savoir que l° le maximum dû à l'atome de B reste en x = 0.293

Tableau	6.	Th _{0.23} Na _{0.77} B ₆
	•••	0,23-0.0,77-6

Indice	Io	F_{o}	F_{c}
100	269		-15,18
110	1438	-28,2	+26,88
111	888	29,1	-27,13
200	639	+29,3	+27,24
210	1169	-21,4	-21,93
211	557	+15,1	+15,25
220	307	+17,1	+16,53
221	1130	-24,0	-25,64
300	34	- 8,3	- 8,81
310	845	+21	+19,55
411	513	-17,2	-16,73
222	75	+11,0	+ 8,16
320	355	-14,8	
321	677	+14,9	+15,76
400	259	+25,9	+23,16
410	201	-11,5	-11,43
332	700	-18,2	-18,0
411	340	+14,8	+14,65
330	383	+22,2	+22,09
331	208	-11,4	-10,97
420	444	+16,1	+15,98
421	836	-15,4	- 15,89
332	453	+15,3	+15,49
422	170	+ 9	+ 8,89
500	61	-10,1	10,35
430	115	— 7,0	- 7,10
510	334	+11,8	+12,36
431	1050	+14,9	+15,53
511	833	-17,2	-16,90

et que 2° les deux maxima parasites restent au même endroit. Nous ne reproduisons pas cette courbe, en tous points semblable à celles de la Fig. 3. Le Tableau 6 résume les valeurs des facteurs de structure mesurés et calculés de Th_{0.23}Na_{0.77}B₆.

Liaisons B-X

Si l'on admettait que le bore possède toujours un rayon de 0,86 Å, le rayon métallique dans la direction B-X serait excessivement grand et dépasserait dans tous les cas $\frac{1}{2}a$, limite supérieure du rayon métallique. En retranchant de la distance B-X la valeur $\frac{1}{2}a$ on obtient donc une valeur minima du rayon de B dans la direction B-X. Ces valeurs sont consignées dans la cinquième colonne du Tableau 4. Le rayon de B dans la direction B-X est alors du même ordre que dans X₂B. Les liaisons que B est susceptible de former sont donc de deux sortes, liaisons covalentes B-B et rigides, liaisons B-métal, plus lâches et 'élastiques'.

Nature des liaisons et théorie de Pauling

Les métaux X des hexaborures ont ceci de commun qu'ils n'ont pas d'électrons d dans la couche électronique située immédiatement au dessous des électrons de valence. Remarquons d'ailleurs en passant que la stabilité des borures en général, mesurée qualitativement par leur point de fusion ou par leur sensibilité à l'attaque chimique (Kiessling & Liu, 1951) décroît avec le degré de remplissage de la couche d et que les éléments à couche d complète, monovalents et bivalents (Au, Ag, Cu, Cd, Zn) ne forment pas de borures.

Comme d'une part les métaux constitutifs des hexaborures peuvent être bi-, tri- et tétravalents (Th) et que même Na monovalent peut entrer dans la maille, la théorie de Pauling ne peut apporter que des renseignements qualitatifs, car elle est basée sur la variation, en fonction de la valence, des distances interatomiques qui, elles, varient peu (Tableau 4) en raison de la rigidité de l'édifice des B. En notant n_1 , n_2 et n_3 les nombres de liaison respectifs ('bond strength') de B-B, X-B et X-X, l'application de la théorie de Pauling aboutit à des valences trop fortes des alcalino-terreux (7,6 pour Ba au lieu de 2) et trop faibles des terres rares (2,22 pour Y au lieu de 3).

Dans ces calculs nous avons pris pour rayon univalent du bore r(1) = 0.77 Å. Qualitativement l'application de la théorie de Pauling fournit des valeurs de n_1 voisines de 0,5 et de n_2 voisines de $\frac{1}{8}$ de sorte que la valence du bore est $v_B = 5 \times \frac{1}{2} + 4 \times \frac{1}{8} = 3$. Si donc chaque B contribue à la liaison B-B par $\frac{1}{2}$ électron, chaque liaison B-B porterait un électron et serait du caractère particulier de liaison résonante à un seul électron (single electron resonating bond) (Pauling, 1940). Chaque B pourrait alors céder $\frac{1}{2}$ électron au réseau métallique.

Les grands rayons atomiques et la conductibilité électrique marquée (Lafferty, 1951) prouvent le caractère métallique des hexaborures. Leur isomorphisme

Fig. 5. Structure de UB₁₂. On a dessiné les groupements B₁₂ pour faire ressortir la ressemblance avec la structure de NaCl.

parfait d'une part, la substitution partielle du métal X par Na d'autre part les approchent des alliages. La concentration limite de Na correspond à la formule $Ba_{0,57}Na_{0,43}B_6$ dans le système BaB_6 et à $Th_{0,23}Na_{0,77}B_6$ dans celui de ThB_6 . Elle augmente donc avec la valence du métal solvant. La possibilité de la substitution prouve que ces réseaux sont stables pour une concentration électronique par atome métallique inférieure à 2.

Il n'y a pas de transfert d'électrons du réseau des B vers les couches d des métaux, car d'après les mesures des moments magnétiques de Benoit & Blum (1952) les terres rares sont trivalentes dans leurs hexaborures.

C. UB₁₂

A cause de l'analogie de l'uranium avec une terre rare, l'un des auteurs a suggéré la préparation d'un borure d'uranium à teneur en B plus élevée que UB₄. L'autre l'a préparé, en collaboration avec J. L. Andrieux (Andrieux & Blum, 1949). Le résultat a été UB₁₂ dont la structure, brièvement décrite dans les Comptes Rendus (Bertaut & Blum, 1949) constitue un type nouveau. Vue l'analogie établie par Zachariasen (1949b) entre les composés de U et les transuraniens, il est probable que ceux-ci forment des borures du même type. Dans cette structure (groupe $O_b^5 - Fm3m$, $\mathbf{a} =$ 7,468 Å, 4 U en 4(a), B en 48(i) chaque atome de bore a cinq voisins B et deux voisins proches U. Chaque U est entouré d'un cube-octaèdre, formé par 24 atomes de B. Les atomes de B forment des réseaux d'hexagones dans tous les plans (111) (Fig. 4). Une autre représentation nous a été suggérée par Monsieur le professeur Ch. Mauguin. Elle consiste à envisager UB_{12} comme une structure du type NaCl, faisant le pendant aux structures XB_6 du type CsCl, U correspondant à Na et le complexe des 12 B, placé aux sommets d'un cubo-octaèdre correspondant à Cl (Fig. 5).

Des groupements B_{12} existent dans B_4C (= $B_{12}C_3$) (Zhdanov & Sevast'yanov, 1941; Clark & Hoard, 1943) où B est placé aux sommets d'un icosaèdre et, semble-t-il, aussi dans le bore cristallisé lui-même (Hoard, 1951). (Le 'referee' a attiré notre attention sur la structure de ZrB_{12} (Post & Glaser, 1952), isomorphe de UB_{12} , avec un paramètre a = 7,408 Å. Il serait intéressant de savoir si ZrB_{12} est diamagnétique comme UB_{12} (mesures non publiées de R. Benoit) en quel cas Zr n'aurait pas d'électrons 4d.)

Liaisons B-B

Comme dans les hexaborures, les liaisons B-B ne sont pas équivalentes *a priori*. Il existe en effet dans un hexagone de bore trois liaisons B-B, chacune perpendiculaire à la ligne de jonction de deux atomes d'uranium proches, les trois autres liaisons étant d'une autre espèce. (On peut encore distinguer entre les liaisons B-B d'un complexe et les liaisons B-B entre complexes B_{12} .) Le choix du paramètre $x_B = \frac{1}{6}$ dont dépend la position des atomes de B avait été dicté par l'accord qualitatif avec les intensités observées. Il confère de plus l'équivalence aux liaisons B-B. Pour préciser ce point, nous avons évalué, par analyse de Fourier, la densité électronique le long de la droite $[\frac{1}{2}, \frac{1}{2}, 0]$. La courbe représentative (Fig. 6) a son maximum en x = 0,166, c'est à dire $\frac{1}{6}$. On contrôle

Fig. 6. Analyse de Fourier de UB_{12} suivant la droite $[\frac{1}{2}, \frac{1}{2}, 0]$.

comme plus haut, par la construction de la série de Fourier au moyen des facteurs de structure calculés et en nombre égal, que la sommation finie donne lieu au même maximum parasite et qu'elle ne déplace pas

	Tableau	7. UB ₁₂	
Indice	Io	F_o	Fc
111	· 135	71,6	74,66
200	115	78,1	83,00
220	143	67,7	70,50
311	337	81.1	82,20
222	130	83.4	82,00
400	75	75.7	71.00
331	222	67.2	69.00
420	183	61.5	62 30
422	235	70.5	70.90
333	28	42,0	42,10
511	160	58.0	58,30
440	84	57.8	55,70
531	440	64,8	65,00
600	81	77,6	79,70
442	214	63.0	64.70
620	213	59.4	58.00
533	240	58.7	56.00
622	217	55.1	51.26
444	115	62,6	59,65
711	234	48,2	49,44
551	234	48,2	49,44
640	328	55,1	53,8
642	640	48,5	47,8
731	1,104	57,3	56,4
553	552	57,3	56,4
800	178	51.6	50.4

le maximum. Le Tableau 7 résume les facteurs de structure observés et calculés (technique expérimentale, comme sous § B).

Liaisons B-U

Nous avons attribué (Bertaut & Blum, 1949) le rayon 'anormalement' élevé de l'uranium dans la direction U-B, calculé dans l'hypothèse que $r_{\rm B} =$ 0,88 Å à la coordination élevée. Une explication plus simple peut être donnée en admettant comme plus haut que le rayon de B est plus grand dans la direction U-B et que U est dans l'état de valence faible v = 2,3. La théorie de Pauling fournit alors un rayon $r_{\rm U}(24) =$ 1,727 Å dans la direction U-B. La distance U-B étant de 2,796 Å, on déduit alors un rayon $r_{\rm B} = 1,07$ Å, valeur comprise dans l'intervalle possible des rayons $r_{\rm B}$ dans les liaisons B-métal.

Substitution de Na

Des essais de substitution de Na ont conduit à un échec dont la raison peut être attribuée à la différence entre le rayon de Na, supérieur à 2 Å, et celui de U, sûrement inférieur à 1,9 Å. Pour cette même raison stérique le composé UB_6 n'existe pas, la plus petite lacune dont l'édifice des B puisse s'accomoder ayant un rayon de 2,05 Å (cf. aussi les paramètres du Tableau 3).

D. Comparaison entre les structures

Les structures XB_4 , XB_6 et XB_{12} discutées ici ont le caractère métallique en commun avec les borures à teneur faible et moyenne. Ce qui les différencie est le fait que la couche d immédiatement au-dessous des électrons de valence est vide.

Les structures XB_6 et UB_{12} ont une symétrie élevée. Dans les deux cas les polyèdres de coordination sont formés de 24 atomes de B et la coordination des B autour de chaque B est quintuple. Les figures de coordination ne sont pas les mêmes. Nous espérons qu'ils fourniront matière de discussion aux théoriciens.

L'existence de ThB₄, UB₄, isomorphes de CeB₄, celle de ThB₆, isomorphe de CeB₆, enfin la parenté des structures de UB₁₂ et de XB₆ apportent une preuve de plus à l'existence d'une série de terres rares commençant par l'actinium.

Références

- ALLARD, G. (1932). Bull. Soc. chim. Fr. 51, 1213.
- ANDRIEUX, J. L. (1929a). Thèse, Masson, Paris.
- ANDRIEUX, J. L. (1929b). Ann. Chim. 12, 423.
- ANDRIEUX, J. L. & BARBETTI, D. (1932). C. R. Acad. Sci., Paris, 194, 1573.
- ANDRIEUX, J. L. & BLUM, P. (1949). C. R. Acad. Sci., Paris, 229, 210.
- BENOIT, R. & BLUM, P. (1952). C. R. Acad. Sci., Paris, 234, 2428.
- BERTAUT, F. & BLUM, P. (1949). C. R. Acad. Sci., Paris, 229, 666.
- BERTAUT, E. F. & BLUM, P. (1951). Acta Cryst. 4, 72.
- BERTAUT, F. & BLUM, P. (1952). C. R. Acad. Sci., Paris, 234, 2621.
- BINET DU JASSONEIX, R. (1909). Thèse, Paris.
- CLARK, H. K. & HOARD, J. L. (1943). J. Amer. Chem. Soc. 65, 215.
- HOARD, J. L. (1951). J. Amer. Chem. Soc. 73, 1892.
- KIESSLING, R. (1950). Acta chem. scand. 4, 209.
- KIESSLING, R. (1951a). J. Electrochem. Soc. 98, 166.
- KIESSLING, R. (1951b). J. Electrochem. Soc. 98, 518.
- KIESSLING, R. & LIU, Y. H. (1951). J. Metals, 3, 639.
- LAFFERTY, J. M. (1951). J. Appl. Phys. 22, 299.
- LAVES, F. (1933). Z. phys. Chem. B, 22, 114.
- MOISSAN, R. & WILLIAMS, G. (1897). C. R. Acad. Sci., Paris, 125, 629.
- PAULING, L. (1940). The Nature of the Chemical Bond, 2^e éd. Ithaca: Cornell University Press.
- PAULING, L. (1947). J. Amer. Chem. Soc. 69, 542.
- PAULING, L. & EWING, F. H. (1948). J. Amer. Chem. Soc. 70, 1660.
- PAULING, L. & WEINBAUM, S. (1934). Z. Kristallogr. 187, 181.
- Post, B. & GLASER, F. W. (1952). J. Metals, 4, 631.
- STACKELBERG, M. v. & NEUMANN, F. (1932). Z. phys. Chem. B, 19, 314.
- ZACHARIASEN, W. H. (1949a). Acta Cryst. 2, 94.
- ZACHARIASEN, W. H. (1949b). Acta Cryst. 2, 388.
- ZALKIN, A. & TEMPLETON, D. H. (1950). J. Chem. Phys. 18, 391.
- ZHDANOV, G. S. & SEVAST'YANOV, N. G. (1941). C. R. Acad. Sci. U.R.S.S. 32, 432.